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1. Introduction

University endowment funds allocate large fractions of their portfolios to illiquid alter-

native assets. Indeed, more than half of aggregate university endowment fund assets are

currently allocated to illiquid assets such as such as hedge funds, private equity, venture

capital, and natural resources. An investment strategy of high allocations to illiquid

assets is often referred to as the Endowment Model, as it was popularized by the success

of David Swensen of the Yale University endowment fund and other universities (Lerner,

Schoar, and Wang (2008)).1 The Endowment Model (e.g., Swensen, 2000) argues that

long-term investors with access to valuable illiquid investment opportunities should have

relatively high allocations to alternative assets, so as to earn illiquidity premiums and

exploit the inefficiencies found in illiquid markets.

The Endowment Model, however, has its limitations. As Swensen (2005) himself

notes, only sophisticated investors who have access and can identify superior active man-

agers should invest in alternative assets. Further, illiquidity can be costly. For example,

during the financial crisis the endowments of Harvard and Stanford Universities incurred

significant losses due to their large allocations to illiquid assets.2 That is, illiquidity can

be particularly costly in bad times when financial reserves are most needed. Therefore,

investors need to properly balance the costs and benefits of investing in illiquid assets. Al-

though the Endowment Model provides general guidelines for investing in illiquid assets,

these guidelines are based on static mean-variance modeling (Takahashi and Alexander

(2002)) and rules of thumb. This is not surprising, as the Endowment Model is developed

from practitioners’ lore and not explicitly derived from a dynamic optimizing framework.

In this paper, we bridge the gap between the practitioners’ Endowment Model and

academic portfolio theory by developing a parsimonious yet sufficiently rich model to

analyze a long-term investor’s dynamic consumption and asset allocation decisions. The

1See Swensen (2000), Takahashi and Alexander (2002), and Leibowitz, Bova, and Hammond (2010).
Lerner, Schoar, and Wang (2008, figure 3) show that allocations to alternative assets increased sharply
for selective institutions.

2For further discussion of the effects of endowment illiquidity on Harvard University see Ang (2012)
and for Stanford see http://www.nytimes.com/2009/10/06/business/06sorkin.html.
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key is to incorporate illiquid (alternative) investment opportunities into an otherwise

standard Modern portfolio theory (MPT) framework developed by Markowitz (1952)

and Merton (1969, 1971) where all assets are liquid.3 We use this dynamic portfolio

choice model to illustrate the heterogeneity of investment strategies followed by investors

with different preferences, investment horizons, and investment opportunities. We show

the conditions under which portfolio allocations similar to those recommended by the

Endowment Model can be optimal for investors, as well as the conditions under which

the Endowment Model does not serve investors well.

Our model incorporates a key feature of alternative assets, illiquidity, in a manner

that is sufficiently realistic and also analytically tractable. First, the alternative asset has

automatic liquidity events on dates when the alternative asset (or a fraction of it) becomes

fully liquid. For example, when a hedge fund lock-up expires or a private equity fund

liquidates. This is an important feature of our model, as advocates of the Endowment

Model argue that natural liquidity, such as private equity cash distributions, offsets much

of the apparent illiquidity of alternative assets (see Swensen (2000) and Takahashi and

Alexander (2002)). Our model show how an investor can engage in liquidity diversification

by investing in multiple alternative asset funds with automatic liquidity events staggered

over time.4 Second, the investor can voluntarily transact in the illiquid alternative asset at

any time by paying a proportional transaction cost. For example, this cost would include

the empirically observed discounts for alternative assets sold in secondary markets due to

search and adverse selection costs. Third, the alternative asset’s risk is not fully spanned

by public equity, and this unspanned risk together with the illiquidity has a first-order

effect on asset allocation.

Our qualitative and quantitative results significantly differ from the standard predic-

tions implied by MPT. We show that wt = Wt/Kt, the ratio between the value of liquid

wealth Wt (e.g., stocks and bonds) and the value of the illiquid alternative asset holding

3Many research papers in the portfolio-choice literature analyze the impact of illiquidity on asset
allocation, which we fully acknowledge. The key contribution of our model is to link to the widely-
used Endowment Model and take a balanced perspective on when it is sensible to follow the model’s
recommendation, and to examine how to improve upon the Endowment Model.

4For an empirical examination of liquidity diversification, see Robinson and Sensoy (2016).
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Kt, follows a double-barrier policy: the investor rebalances only when the value of the

alternative asset rises or falls to the endogenous rebalancing boundaries.5 This result is

in sharp contrast to the classic MPT prediction that the allocation ratio between any

two assets is constant over time.

We provide an analytical characterization for the investor’s certainty equivalent wealth

under optimality, P (Wt, Kt, t), which is the time-t total wealth that makes the investor

indifferent between: permanently forgoing the opportunity to invest in the illiquid asset

and keeping the status quo with liquid wealth Wt and illiquid wealth Kt with the op-

portunity to invest in the illiquid asset. We exploit the model’s tractability to provide

a quantitative yet intuitive analysis of a long-term investor’s optimal portfolio choice,

spending rule, and welfare measured by P (Wt, Kt, t).

We show that the two types of illiquidity – arising from lock-ups and from transaction

costs – interact over time. As an automatic liquidity event approaches, the investor

becomes less willing to liquidate alternative assets. The rebalancing policies are also

strongly affected by liquidity diversification; investors who invest in more alternative

asset funds and stagger the maturities of their investments can maintain much more

stable portfolio allocations.

We calibrate our model using parameters drawn from the literature and compare the

results with the portfolio allocations of actual university endowment funds. We find three

main results.

First, our model matches the empirically observed variation in endowment funds’ al-

locations to alternative assets given reasonable variation in beliefs about its alpha. The

model defines alpha relative to the benchmark of public equity, and thus “alpha” may

include compensation for illiquidity, managerial skill, and the value created through im-

proved corporate governance and incentive structures.6 With an alpha of 3% per year and

5The double-barrier policy is a standard feature in models with transaction costs. See Davis and
Norman (1990) as an early example in the portfolio-choice literature.

6Franzoni, Nowak, and Phalippou (2012) show that private equity funds earn liquidity premia; Aragon
(2007) and Sadka (2010) show similar findings for hedge funds. Cornelli and Karakas (2008) argue that
private equity funds create value-add (i.e., alpha) by improving corporate governance and operating
efficiency. See Kaplan and Strömberg (2009), Metrick and Yasuda (2011) and Agarwal, Mullally, and
Naik (2015) for review studies of alternative asset performance.
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unspanned volatility of 15% our model implies an alternative asset allocation of 60.2%,

which is consistent with the actual allocations of the largest decile of endowment funds.

With expected alphas of 1% and 2%, our model implies alternative asset allocations of

12.7% and 34.5%, respectively, which approximately match the interquartile range of

endowment fund allocations.

Second, our calibration shows that asset allocations are very sensitive to the un-

spanned volatility of the alternative asset. For example, as the unspanned volatility

changes from 10% to 15%, the implied allocation to alternative assets falls by more than

half from 76.3% to 34.5%. We further show that, controlling for the level of the alterna-

tive asset’s total risk, the spanned and unspanned risks have quantitatively very different

effects on asset allocation. While the investor can offset the alternative asset’s spanned

risk of the by adjusting allocations to public equity, the alternative asset’s unspanned

volatility is by definition specific to the alternatives and cannot be hedged. Alternative

asset performance metrics such as internal rates of returns (IRRs) and public market

equivalent (PMEs), while useful, do not directly guide investors’ asset allocation as these

metrics ignore the distinction between spanned and unspanned volatilities.

Third, investors’ preferences for inter-temporal spending smoothing have a first-order

effect on their investment strategies due to the presence of illiquid alternative assets.

We use non-expected utility preferences developed by Epstein and Zin (1989), which

separates risk aversion from the elasticity of intertemporal substitution (EIS). This sep-

aration is economically and quantitatively important for our analysis as by varying the

EIS we conveniently capture the heterogeneity in spending flexibility across institutional

investors.7 For example, defined benefit pension plans have little spending flexibility and

so have a low EIS. In contrast, family offices have high spending flexibility and university

endowments have intermediate flexibility.

The EIS has large effects on the spending rate: changing the EIS from 0.5 to 1

decreases the spending rate from 5.3% to 4.0%. This closely matches the actual variation

in university endowment fund spending rates (e.g., Sedlacek and Jarvis (2010) report that

7See Hayes, Primbs, and Chiquoine (2015) for a discussion of spending flexibility across investors.
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policy payout rates typically range from 4.0% to 5.5%). The EIS also affects portfolio

allocations when the alternative asset is illiquid. An investor with a high EIS is more

willing to substitute consumption across periods, and so is more willing to accept portfolio

illiquidity. For example, changing the EIS from 0.5 to 1 implies an increase in alternative

asset holdings of 5.7 percentage points. This contrasts with the case of full spanning,

in which the EIS does not affect asset allocation. Thus, a higher EIS results in lower

spending and higher portfolio risk. Over time, this combination results in substantially

greater wealth accumulation for high EIS investors.

We focus on the dynamic asset allocation problem faced by an institutional investor’s

Chief Investment Officer (CIO) who is assumed to behave in the interest of the investor,

and leave the delegated management problem (between the CIO and asset managers who

implement security selection) outside of our model for simplicity. However, Sharpe (1981),

Elton and Gruber (2004), and Binsbergen, Brandt, and Koijen (2008) emphasize that this

two-step delegated investment process can result in misaligned incentives. Binsbergen,

Brandt, and Koijen (2008) show that these incentive issues between the CIO and external

asset managers can result in large utility costs for institutional investors due to loss of

incongruence differences in the preferences of the institution and the asset manager.

Related Literature. Ang, Papanikolaou, and Westerfield (2016) develop a parsimo-

nious and tractable quantitative model of portfolio choice with an illiquid asset. They

assume that the alternative asset cannot be traded for intervals of uncertain duration

(modeled via a stochastic Poisson arrival process). In their model the asset can be fully

illiquid for extended periods of time due to the long tails associated with exponential

distributions. In contrast, our model has a secondary market that allows liquidation at

all times by paying a proportional transaction cost.

Sorensen, Wang, and Yang (2014) use a dynamic portfolio choice model to value

the cost of illiquidity and management compensation in private equity. For technical

tractability they use constant absolute risk aversion (CARA) utility and hence their

model generates a wealth-independent dollar allocation to private equity and hence is
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not suited for analyzing asset allocation (which in practice is almost always framed in

terms of percentage allocations). Also, the two papers model illiquidity differently. They

assume that the investor must hold the alternative asset for a fixed T years without any

option to exit and does not include a secondary market for the alternative asset.

Bollen and Sensoy (2016) develop a model for valuing illiquid private equity when sec-

ondary markets exist. They assume that investors must place their entire private equity

allocation in a single fund, and they exogenously fix the spending rate and the allocation

to the risk-free asset rather than allowing investors to make optimal portfolio rebalanc-

ing decisions. In contrast, our model allows for liquidity diversification as investors can

stagger illiquid investments over time, and solves for optimal allocations to the risk free

asset, the spending rate, and rebalancing decisions at all times.

In the portfolio-choice literature, illiquidity is often modeled via transaction costs8 or

via trading restrictions in which the asset is freely tradable at certain points in time but

cannot be traded at other times.9 Motivated by the structures of private equity and hedge

funds, as well as the secondary markets for these illiquid alternatives, we combine the

features of both types of models; the alternative asset becomes fully liquid at maturity

(e.g., when a private equity fund is dissolved) but can be liquidated prior to maturity

by paying a proportional cost (e.g., selling a private equity fund at a discount on the

secondary market).

Merton (1992), Gilbert and Hrdlicka (2015), and Cejnek, Franz, and Stoughton (2017)

model the spending and asset allocation decisions of university endowment funds. In these

papers, endowments invest only in fully liquid assets.

2. Model

We analyze a long-term investor’s dynamic spending (or equivalently consumption) and

asset allocation decisions by incorporating an illiquid investment opportunity into the

8For example, see Constantinides (1986), Davis and Norman (1990), Grossman and Laroque (1990),
Vayanos (1998), and Lo, Mamaysky, and Wang (2004).

9For example, see Kahl, Liu, and Longstaff (2003), Longstaff (2009), and Ang, Papanikoaou, and
Westerfield (2016).
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classic modern portfolio theory developed by Merton (1969, 1971) and Samuelson (1969).

We interpret the illiquid investment opportunity in our model as the representative port-

folio of alternative assets including private equity, hedge funds, private real estate, etc.

For technical convenience, we develop our model in continuous time. Next, we summarize

the standard liquid investment opportunities and then introduce the alternative asset.

Liquid Investment Opportunities: Bonds and Public Equity. The risk-free bond

pays interest at a constant (annualized) risk-free rate r. Public equity can be interpreted

as the market portfolio of publicly traded securities, and its cum-dividend market value,

St, follows a geometric Brownian motion (GBM):

dSt
St

= µSdt+ σSdB
S
t , (1)

where B
S
t is a standard Brownian motion, and µS and σS are the constant drift and

volatility parameters. The liquid investment opportunity in our model is the same as in

Merton (1971). Next, we introduce the alternative asset, which is the investor’s third

investment opportunity and the key building block in our model.

2.1. The Alternative Asset

Adding the alternative asset expands the investment opportunity set and thus makes the

investor better off. Additionally, provided the alternative asset is not perfectly correlated

with public equity, it provides diversification benefits. Unlike public equity, however,

alternative assets are generally illiquid and involve some form of lock-up. For example,

investments in private equity typically have a life span of 10 years with extension options

and hedge funds often have lock-up periods and gate provisions.

A key feature of alternative assets is that their illiquidity is not constant over time.

For example, private equity funds are highly illiquid for much of their lives but eventually

mature and return liquid capital to their investors. We model these liquidity events as

follows. Let {At; t ≥ 0} denote the alternative asset’s fundamental value process with a

given initial stock A0. The fundamental value refers to the fully realizable value of the
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asset if it is held to maturity. However, with illiquidity, at any time t prior to maturity

the asset’s fundamental value differs from its market value. Let {Kt; t ≥ 0} denote the

accounting value of the alternative asset holding process with a given initial stock K0. To

capture the target finite duration of the lock-up and holding period, we assume every mT

years, where m is a positive integer, a δT fraction of the stock of illiquid alternative asset

KmT automatically becomes liquid at no cost. Naturally, the investor’s liquid asset value

at time mT increases by δTKmT−. Therefore, in the absence of any active acquisition or

divestment of the illiquid asset at mT , we have KmT = (1− δT )KmT−.

The Fundamental Value Process A for the Alternative Asset. We assume that

the fundamental value A, in the absence of a scheduled automatic liquidity event (at

time mT ) or any interim acquisition or divestment, evolves via the following GBM:

dAt
At−

= µAdt+ σAdB
A
t − δAdt , (2)

where B
A
t is a standard Brownian motion, µA is the cum-payout expected return (net

of fees), σA is the constant volatility of returns, and δA is the alternative asset’s payout

rate. That is, the alternative asset pays dividends at the rate of δAAt with an implied

payout yield of δA. Intuitively, δA is one way for illiquid alternative assets to provide

liquidity to investors. We use ρ to denote the correlation coefficient between the shocks

to alternative assets, BAt , and the shocks to public equity, BSt .

Note that in complete markets, the investor can frictionlessly and dynamically trade

the alternative asset without restrictions or costs. Therefore, the alternative asset’s mar-

ket value equals its fundamental value and the Modigliani-Miller theorem holds, meaning

that whether we explicitly model the alternative asset’s payout yield δA is irrelevant. In

this ideal case, the alternative asset is conceptually no different than liquid public equity.

In contrast, when the alternative asset is illiquid and not fully spanned by public equity,

we must separately keep track of the payout yield δA and expected capital gains µA− δA.

That is, the cum-dividend payout rate µA is no longer a sufficient measure of the to-

tal expected returns for the alternative asset as its (current) payout yield and expected
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capital gains influence the investor’s portfolio optimization problem differently.

Interim Acquisition and Liquidation of the Alternative Asset Holding. At any

time, the investor can choose to change her alternative asset holdings through acquisitions

or liquidations. Let dLt denote the amount of the alternative asset that the investor

liquidates at any time t > 0, and let dXt denote the amount of the alternative asset that

the investor purchases at time t. Then, we can incorporate the investor’s acquisition and

liquidation options into the alternative asset’s fundamental value process as follows:

dKt = (µA − δA)Kt−dt+ σAKt−dB
A
t − dLt + dXt − δTKt−I{t=mT} . (3)

Here, I{t=mT} is the indicator function, which is equal to one if and only if t is an integer

multiple, m, of T . The first two terms correspond to the standard drift and volatility

terms, the third and fourth terms give the liquidation and acquisition amounts, and the

last term captures the lumpy payout to the investor at the scheduled liquidity event dates

t = mT where m = 0, 1, . . .

Although the acquisition and liquidation costs for the alternative asset do not appear

in (3), they will appear in the liquid wealth accumulation process. We assume that the

cost of voluntary liquidation is proportional. That is, by liquidating an amount dLt > 0,

the investor realizes only (1 − θL)dLt in net, where the remaining amount θLdLt is the

liquidation cost. Similarly, if the investor acquires an amount dXt > 0, the transaction

cost θXdXt is paid out of the liquid asset holding to the third party. Naturally, 0 ≤ θL ≤ 1

and θX ≥ 0. Higher values of θL or θX indicate that the alternative asset is less liquid.

Intuitively, θL can be interpreted as the illiquidity discount on secondary market sales

of alternative assets (e.g., see Kleymenova, Tamor, and Vasvari (2012), Bollen and Sensoy

(2016), and Nadauld, Sensoy, Vorkink, and Weisbach (2019)). Such discounts can arise

to compensate buyers for search costs, asymmetric information risks, or due to market

power when there are few buyers. The parameter θX can be interpreted as the transaction

costs of purchasing alternative assets, such as search costs, legal fees, placement agent

fees, consultant fees, and etc. The costs of interim liquidation (θL) and of purchases (θX)
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can be asymmetric as voluntary liquidation is generally more costly, particularly when

there are few buyers and many sellers such as during the recent financial crisis.

Alpha, Beta, and Epsilon (Unspanned Volatility). Suppose that the instanta-

neous return for the alternative asset, dAt/At−, is perfectly measurable. We can then

regress dAt/At− on dSt/St, and obtain the alternative asset’s beta with respect to public

equity, following the standard capital asset pricing model (CAPM) formula:

βA =
ρσA
σS

. (4)

However, in reality, because investors cannot dynamically rebalance their holdings in the

illiquid asset without incurring transaction costs, investors will demand compensation in

addition to the standard risk premium implied by the CAPM.

We decompose the total volatility of the alternative asset, σA, into two orthogonal

components: the part spanned by the public equity, ρσA, and the remaining unspanned

volatility, ǫ, given by:

ǫ =
√
σ2
A − ρ2σ2

A =
√
σ2
A − β2

Aσ
2
S . (5)

This volatility, ǫ, introduces an additional risk into the portfolio, as markets are

incomplete and adjusting the alternative asset holding is costly. We will show that the

spanned and unspanned volatilities play distinct roles in the dynamic asset allocation.10

Anticipating our subsequent risk-return tradeoff analysis in the context of dynamic

portfolio construction, we next introduce α implied by the CAPM, where public equity

is used as the aggregate market portfolio. That is, we define α as follows:

α = µA − (r + βA(µS − r)) , (6)

where βA is the alternative asset’s beta given by (4).

In frictionless capital markets where investors can continuously rebalance their port-

folio without incurring any transaction costs, α measures the risk-adjusted excess return

10Although ǫ is unspanned by public equity, this does not necessarily imply it is purely idiosyncratic
risk. We take no stand on whether public equity is the market portfolio in the sense of Roll (1977).
Thus, ǫ may include systematic risks that are potentially compensated, but which are not correlated
with the market portfolio (e.g., liquidity risk).
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after benchmarking against the other risky assets, which in our model corresponds to

public equity. However, in our framework with illiquid assets, α also includes the part of

the excess return that compensates investors for bearing an illiquidity premium (or for

bearing any other systematic risk that is unspanned by public equity).

2.2. The Optimization Problem

Liquid Wealth and Net Worth. We use W to denote the investor’s liquid wealth

and Π to denote the amount allocated to public equity. The remaining liquid wealth,

W −Π, is allocated to the risk-free bond. Thus, liquid wealth evolves according to:

dWt = (rWt− + δAKt− − Ct−) dt+Πt−

(
(µS − r)dt+ σSdB

S
t

)

+(1− θL)dLt − (1 + θX)dXt + δTKt−I{t=mT} , (7)

where the first two terms in (7) are the standard ones in Merton’s consumption/portfolio-

choice problem. The third and fourth terms describe the effect on liquid wealth W due

to the investor’s interim liquidation and purchase of the alternative asset. Recall that

θL and θX capture the proportional cost of interim liquidations and purchases of the

alternative asset, respectively. Finally, the last term captures the lumpy payout to the

investor at the automatic liquidity event dates t = mT .

Recursive Preferences and Value Functions. The investor’s preferences allow for

separation of risk aversion and the elasticity of intertemporal substitution (EIS). Epstein

and Zin( 1989) and Weil (1990) develop this utility in discrete time by building on early

important work by Kreps and Porteus (1978). We use the continuous-time formulation of

this non-expected utility, introduced by Duffie and Epstein (1992). That is, the investor

has a recursive preference defined as follows:

Vt = Et

[∫ ∞

t

f(Cs, Vs)ds

]
, (8)

where f(C, V ) is known as the normalized aggregator for consumption C and the in-

vestor’s utility V . Duffie and Epstein (1992) show that f(C, V ) for Epstein-Zin non-
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expected homothetic recursive utility is given by:

f(C, V ) =
ζ

1− ψ−1

C1−ψ−1

− ((1− γ)V )χ

((1− γ)V )χ−1
, (9)

where

χ =
1− ψ−1

1− γ
. (10)

The parameter ψ > 0 measures the EIS, and the parameter γ > 0 is the coefficient of

relative risk aversion. The parameter ζ > 0 is the investor’s subjective discount rate.

This recursive, non-expected utility formulation allows us to separate the coefficient

of relative risk aversion (γ) from the EIS (ψ), which is important for our quantitative

analysis. For example, a key source of preferences heterogeneity among investors is the

elasticity and flexibility of their spending. The expected CRRA utility is a special case

of recursive utility where the coefficient of relative risk aversion, γ, equals the inverse of

the EIS, γ = ψ−1, implying χ = 1.11

There are three state variables for the optimization problem: liquid wealth Wt, the

alternative asset’s value Kt, and calendar time t. Let V (Wt, Kt, t) denote the corre-

sponding value function. The investor chooses consumption C, public equity investment

Π, and the alternative asset’s cumulative (undiscounted) liquidation L and cumulative

(undiscounted) acquisition X to maximize (8).

Naturally, at each automatic liquidity event date iT , if WiT = W(i−1)T = W , and

KmT = K(m−1)T = K, we must have:

V (W,K,mT ) = V (W,K, (m− 1)T ) . (11)

Hence, it is sufficient for us to characterize our model over (0, T ], as the solution is

stationary every T years.

3. Model Solution

We solve the model as follows. First, we analyze the investor’s problem in the region

where there is no voluntary adjustment of the alternative asset in the absence of automatic

11For the special case of CRRA, f(C, V ) = U(C)− ζV , where U(C) = ζC1−γ/(1− γ). By integrating
Eq. (8), we obtain Vt = Et

[∫∞

t
e−ζ(s−t)U(Cs)ds

]
.
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liquidity event (i.e., when t 6= mT .) Second, we characterize the investor’s voluntary

liquidation and acquisition decisions for the alternative asset when t 6= mT . Finally, we

integrate the periodic liquidity event that occurs at t = mT to complete our analysis.

Dynamic Programming and First-Order Conditions (FOCs). Fix time t within

the time interval ((m− 1)T,mT ), where m is a positive integer. Using the standard dy-

namic programming approach, we have the following standard Hamilton-Jacobi-Bellman

(HJB) equation for the investor’s value function V (Wt, Kt, t) in the interior region:

0 = max
C,Π

f(C, V ) + (rW + δAK + (µS − r)Π− C)VW +
(ΠσS)

2

2
VWW

+Vt + (µA − δA)KVK +
σ2
AK

2

2
VKK + ρΠKσSσAVWK . (12)

The first three terms on the right side of (12) capture the standard effects of consumption

and asset allocation (both drift and volatility effects) on the investor’s value function,

V (Wt, Kt, t) as in Merton (1971). The investor’s opportunity to invest in the illiquid

alternative asset generates three additional effects on asset allocation: 1) the effect of

target holding horizon T captured by Vt; 2) the risk-return and volatility effects of changes

in the value of the alternative asset K; and 3) the additional diversification/hedging

benefits due to the correlation between public equity and the alternative asset. By

optimally choosing C and Π, the investor equates the right side of (12) to zero in the

interior region where there is no interim liquidation nor acquisition.

The optimal consumption C is characterized by the following standard FOC:

fC(C, V ) = VW (W,K, t), (13)

which equates the marginal benefit of consumption with the marginal value of savings

VW . The optimal investment in public equity is given by:

Π = −
µS − r

σ2
S

VW
VWW

−
ρσA
σS

KVWK

VWW

. (14)

The first term gives the classical Merton’s mean-variance demand and the second term

captures the investor’s hedging demand with respect to the illiquid alternative asset.
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Note that the hedging demand depends on the cross partial VWK , and is proportional

to ρσA/σS (which is equal to βA as shown in (4)). Both results are intuitive and follow

from the standard hedging arguments in Merton (1971); the investor chooses her public

equity allocation to fulfill two objectives: to obtain the desired mean-variance exposure

and to hedge the fraction of the alternative asset’s risk spanned by public equity.

Certainty Equivalent Wealth P (W,K, t). We express the investor’s value function

V (W,K, t) during the time period t ∈ ((m− 1)T,mT ) as:

V (W,K, t) =
(b1P (W,K, t))

1−γ

1− γ
, (15)

where b1 is a constant given by:

b1 = ζ
ψ
ψ−1φ

1

1−ψ

1 , (16)

and φ1 is the constant given by:

φ1 = ζ + (1− ψ)

(
r − ζ +

(µS − r)2

2γσ2
S

)
. (17)

Guided by MPT, we can interpret P (W,K, t) as the investor’s certainty equivalent

wealth, which is the minimal amount of total wealth required for the investor to perma-

nently give up the opportunity to invest in the alternative asset. That is, in the interim

period where (m− 1)T < t < mT ,

V (W,K, t) = J(P (W,K, t)) . (18)

Here, J( · ) is the value function for an investor who can invest only in liquid public equity

and risk-free bonds. We show that J( · ) is given by

J(W ) =
(b1W )1−γ

1− γ
, (19)

where b1 is given in (16).

Homogeneity Property. In our model, the certainty equivalent wealth P (W,K, t)

has the homogeneity property in W and K, and hence it is convenient to work with the
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liquidity ratio wt = Wt/Kt and the scaled certainty equivalent wealth function p(wt, t)

defined as follows:

P (Wt, Kt, t) = p(wt, t) ·Kt . (20)

This homogeneity property is due to the Duffie-Epstein-Zin utility and the value processes

for public equity and the alternative asset. Importantly, this homogeneity property allows

us to conveniently interpret the optimal portfolio rule and target asset allocation.

Endogenous Effective Risk Aversion γi. To better interpret our solution it is help-

ful to introduce the following measure of endogenous relative risk aversion for the investor,

denoted by γi(w, t) and defined as follows:

γi(w, t) ≡ −
VWW

VW
× P (W,K, t) = γpw(w, t)−

p(w, t)pww(w, t)

pw(w, t)
. (21)

In (21) the first identity sign gives the definition of γi and the second equality follows

from the homogeneity property.

What economic insights does γi(w, t) capture and what is the motivation for intro-

ducing it? First, recall the standard definition of the investor’s coefficient of absolute risk

aversion is −VWW/VW . To convert this to a measure of relative risk aversion, we need to

multiply absolute risk aversion −VWW/VW with an appropriate economic measure for the

investor’s total wealth. Under incomplete markets, although there is no market-based

measure of the investor’s economic well being, the investor’s certainty equivalent wealth

P (W,K, t) is a natural measure of the investor’s welfare. This motivates our definition

of γi in (21).12 We will show that the illiquidity of alternative assets causes the investor

to be effectively more risk averse, meaning pw(w, t) > 1 and pww(w, t) < 0, so that

γi(w, t) > γ. In contrast, if the alternative asset is publicly traded (and markets are

complete), γi(w, t) = γ as pw(w, t) = 1 and pww(w, t) = 0.

12 See Wang, Wang, and Yang (2012) and Bolton, Wang and Yang (2018) for similar definitions
involving endogenous risk aversion but for very different economic applications.
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Optimal Policy Rules. Again, by using the homogeneity property, we may express

the scaled consumption rule c(wt, t) = C(Wt, Kt, t)/Kt as follows:

c(w, t) = φ1 p(w, t) pw(w, t)
−ψ . (22)

Because illiquidity makes markets incomplete, the investor’s optimal consumption policy

is no longer linear and depends on both the certainty equivalent wealth p(w, t) and also

the marginal certainty equivalent value of liquid wealth pw(w, t).

The allocation to public equity is Πt = π(wt, t)Kt where π(w, t) is given by:

π(w, t) =
µS − r

σ2
S

p(w, t)

γi(w, t)
−
ρσA
σS

(
γp(w, t)

γi(w, t)
− w

)
, (23)

where γi( · ) is the investor’s effective risk aversion given by (21). Intuitively, the first term

in (23) reflects the mean-variance demand for the market portfolio, which differs from

the standard Merton model in two ways: 1) risk aversion γ is replaced by the effective

risk aversion γi(w, t) and 2) net worth is replaced by certainty equivalent wealth p(w, t).

The second term in (23) captures the dynamic hedging demand, which also depends on

γi(w, t) and p(w, t).

PDE for p(w, t). Substituting the value function (15) and the policy rules for c and π

into the HJB equation (12) and using the homogeneity property and the definition of the

investor’s effective risk aversion, γi, given by (21), we obtain the following PDE for p(w, t)

at time t, for the liquidity ratio wt in the interior region, and when (m− 1)T < t < mT :

0 =

(
φ1 (pw(w, t))

1−ψ − ψζ

ψ − 1
+ µA − δA −

γσ2
A

2

)
p(w, t) + pt(w, t) +

ǫ2w2

2
pww(w, t) (24)

+
(
δA − α + γǫ2

)
wpw(w, t)−

γǫ2w2

2

(pw(w, t))
2

p(w, t)
+

(
µS−r
σS

− γρσA

)2
pw(w, t)p(w, t)

2γi
.

Because of incomplete spanning (e.g., ǫ 6= 0), unlike Black-Scholes, (24) is a nonlinear

PDE, and moreover, pw(w, t) > 1, as we will show. The numerical solution for p(w, t)

involves the standard procedure.
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Rebalancing the Illiquid Alternative Asset during the Interim Period. Al-

though under normal circumstances the investor plans to hold the alternative asset until

an automatic liquidity event occurs at date mT , under certain circumstances the investor

may find it optimal to actively rebalance even at time t 6= mT .

As acquisition and voluntary liquidation are costly, we have an inaction region at all

time including t = mT . Let wt and wt denote the lower liquidation boundary and the

upper acquisition boundary for the liquidity ratio wt at time t, respectively. We show

that it is optimal for the investor to keep the liquidity ratio wt within the boundary

(wt, wt) by voluntarily liquidating a portion of the illiquid alternative asset if wt is too

high and acquiring the illiquid alternative asset if wt is too low.

We show in Appendix B that the following conditions hold at wt and wt, respectively,

p(wt, t) =
(
1− θL + wt

)
pw(wt, t) , (25)

p(wt, t) = (1 + θX + wt) pw(wt, t) . (26)

These two equations at the boundaries are implied by the continuity of the value function,

the linear transaction acquisition and liquidation cost functions (i.e., constant θL and θX),

and the homogeneity property of our model.13

Next, we provide the conditions that describe the investor’s optimal liquidation and

acquisition decisions. By differentiating (25) with respect to wt and (26) with respect to

wt, we obtain the following boundary conditions:

pww
(
wt, t

)
= 0 , (27)

pww (wt, t) = 0 , (28)

which are often referred to as the “super contact” conditions as in Dumas (1991).

Until now, we have characterized the investor’s optimal decision ignoring the potential

automatic liquidity event. Next, we analyze the investor’s decision at t = mT when the

13As p ≥ 0 and pw ≥ 0, equation (25) implies wt ≥ −(1− θL), meaning that the investor can borrow
only a fraction of the alternative asset’s fundamental value. As a result, the investor can repay the
liability with probability one by liquidating the alternative asset. Thus, the investor’s debt capacity is
endogenously determined by the liquidation value of the alternative asset. Although the investor can
borrow, in our numerical exercise, as in reality, the investor rarely does borrow.
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portfolio’s liquidity changes discretely due to the automatic liquidity event, i.e., when an

alternative investment in the investor’s portfolio pays a lumpy liquidating dividend.

Value and Decisions when there is an Automatic Liquidity Event at t = mT .

At time t = mT , a fraction δT of the alternative asset automatically becomes fully liquid

without any voluntary liquidation. We use ŴmT and K̂mT to denote the corresponding

levels of liquid wealth and the alternative asset at t = mT if the investor chooses not to

do any voluntary rebalancing. It is immediate to see ŴmT = limt→mT (Wt + δTKt) and

K̂mT = limt→mT (Kt − δTKt). Let ŵmT denote the corresponding liquidity ratio:

ŵmT ≡
ŴmT

K̂mT

= lim
t→mT

wt + δT
1− δT

. (29)

By now, we have outlined the procedures for calculating both wmT (ignoring the

automatic liquidity event) and ŵmT (focusing only the automatic liquidity event.) Of

course, the investor optimizes her decision by considering both the “marginal analysis”

for the liquidity ratio and the automatic liquidity event at t = mT . As a result, we

have two cases to consider at t = mT : Case (i) where ŵmT ≤ wmT and Case (ii) where

ŵmT > wmT . As the automatic liquidity event always increases liquid asset holdings,

ŵmT is always larger than wmT . Hence, we need only consider these two cases.

In Case (i) when ŵmT ≤ wmT , the optimal liquidity ratio atmT is ŵmT as it is optimal

for the investor not to voluntarily rebalance the illiquid alternative asset holding. The

intuition is that, even with the automatic increase in liquidity at mT , the liquidity ratio

will still lie within the inaction range limt→mT (wt, wt.) Therefore, the continuity of the

value function implies P (WmT , KmT ) = P (ŴmT , K̂mT ), which can be simplified as:

lim
t→mT

p(w, t) = p(ŵmT , t)(1− δT ) , (30)

where ŵmT is given in (29).

In Case (ii) when ŵmT > wmT , the optimal liquidity ratio at mT is wmT as it is

optimal for the investor to voluntarily acquire the illiquid alternative asset. In this

case, the automatic liquidity events results in wmT = ŵmT > wmT , which means the
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investor holds too much of the liquid asset. To bring the portfolio liquidity ratio back

into the inaction region, the investor must acquire more of the alternative asset, so that

wmT = wmT . In Appendix B, we show

lim
t→mT

p(w, t) = p (wmT , mT ) (1− δT + λ) , (31)

where λ reflects the effect of rebalancing and is given by

λ = lim
t→mT

wt + δT − wmT (1− δT )

1 + θX + wmT
. (32)

Finally, the homogeneity property allows us to express the value-matching condition

(11) in terms of p(w, t) at t = mT :

p(w,mT ) = p(w, (m− 1)T ) . (33)

Next, we summarize the main results of our model.

Proposition 1 The scaled certainty equivalent wealth p(w, t) in the interim period when

(m− 1)T < t ≤ mT solves the PDE (24) subject to the boundary conditions (25), (26),

(27), (28), and (33). Additionally, p(wmT−, mT−) satisfies (30), if ŵmT ≤ wmT where

ŵmT is given by (29), and satisfies (31) if ŵmT > wmT .

4. Data and Calibration

4.1. Data and Summary Statistics

The university endowment fund data come from the annual NACUBO-Commonfund

Endowment Survey (NCES) conducted by the National Association of College and U-

niversity Business Officers (NACUBO) and Commonfund. See Brown, Garlappi, and

Tiu (2010), Dimmock (2012), and Brown, Dimmock, Kang, and Weisbenner (2014) for

detailed discussions of these data. We focus on the cross-section of 774 university en-

dowment funds14 as of the end of the 2014-2015 academic year.

14If a university reports multiple endowment funds we aggregate to form a single observation.
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Asset Allocation. The NCES provides annual snapshots of endowment funds’ portfo-

lio allocations. To link the NCES data to the model, we aggregate endowment allocations

into the three asset classes featured in our model: (1) the risk-free asset, which aggregates

cash and fixed income, (2) public equity, which aggregates public equity and REITs, and

(3) the alternative asset, which aggregates hedge funds, private equity, venture capital,

private real estate, and illiquid natural resources. In the summary statistics, and for gen-

erating some of the calibration parameters, we use the disaggregated sub-asset classes

(e.g., hedge funds, etc.).

Table 1 shows the summary statistics as of the end of the 2014-2015 academic year.

The first and second columns show the equal and value weighted averages, respectively.

The remaining columns show averages within various size categories of endowment funds

(e.g., “0-10%” summarizes the variables for the smallest decile of funds). Panel A shows

that the average Endowment Size is $677 million, but the distribution is highly positively

skewed and the average size for the median decile is $116 million. On an equal weighted

basis, Public Equity has the largest average allocation at 50.7%. On a value weighted

basis, Alternative Allocations has the largest average allocation at 51.7%, compared with

35.6% for public equity and 12.7% for cash and fixed income. The average equally

weighted spending rate is 4.2%.

Panel B of Table 1 shows the summary statistics for the more detailed sub-asset

categories. Within Alternative Allocations, hedge funds has the largest allocation with an

equal weighted average allocation of 16.7%. For all of the sub-asset classes the allocations

increase with endowment size, particularly for the least liquid categories: private equity,

venture capital, private real estate, and illiquid natural resources.

Prior studies show a positive relation between endowment size and alpha, which they

attribute to access to superior alternative asset investments (Lerner, Schoar, and Wang

(2008), Brown, Garlappi, and Tiu (2010), Barber and Wang (2013), and Ang, Ayala,

and Goetzmann (2018)). We follow these papers and also interpret size as a proxy for

the endowment’s ability to access alternative assets with alphas.
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Table 1: Summary of Endowment Fund Asset Allocation

This table summarizes endowment fund portfolios as of the end of the 2014-2015 academic year for 774 endowments. The first three
columns show the mean, value weighted mean, and standard deviation of the variables, respectively. The columns 0-10% to 90-100%
show averages within size-segmented groups of endowment funds. For example, the column “0-10%” shows the value weighted average
portfolio allocation for the smallest decile of endowment funds. The final column shows results for the 20 largest endowment funds. Panel
A shows summary statistics for endowment fund size (reported in millions of dollars), asset class allocations and spending rates (reported
in percentages), the number of alternative asset funds that the endowment holds, and the average target horizon for the alternative assets.
Cash & Fixed Income includes cash, cash equivalents, and fixed income securities (except for distressed securities). Public Equity includes
domestic and foreign equity as well as REITs. Alternative Allocations includes hedge funds, private equity, venture capital, private real
estate, and illiquid natural resources. Panel B reports summary statistics for the more detailed sub-asset classes. Hedge Funds includes
managed futures. Natural Resources includes illiquid natural resources, such as timberland and oil & gas partnerships.

Mean VW Mean Std Dev 0-10% 20-30% 45-55% 70-80% 90-100% Top 20
Panel A
Endowment Size ($M) 677 2,483 17 50.1 116 408 13,409 18,585
Cash & Fixed Income 21.0% 12.7 11.3 33.1 21.7 22.4 15.2 10.8 9.7
Public Equity 50.7% 35.6 14.6 60.1 57.9 54.7 45.9 32.0 29.3
Alternative Allocations 28.3% 51.7 19.3 6.3 20.4 22.9 38.9 57.1 61.0
Spending Rate 4.2% 4.4 2.2 4.5% 3.7 3.9 3.9 4.5 4.5
No. Alternative Funds 16.9 56.0 28.6 1.1 5.6 7.2 22.5 86.5 152.2
Alt. Target Horizon 4.2 5.5 2.5 3.6 4.1 4.0 4.6 5.9 6.3
Panel B
Cash & Equivalents 5.1% 4.0 8.3 7.2 3.5 5.6 3.8 3.5 2.6
Fixed Income 15.9% 8.7 9.3 25.8 18.2 16.8 11.4 7.4 7.1
Public Equity 50.7% 35.6 14.6 60.1 57.9 54.7 45.9 32.0 29.3
Hedge Funds 16.7% 23.4 12.2 4.6 13.0 14.3 22.3 23.8 23.7
Private Equity 4.6% 10.9 6.6 0.2 3.1 3.1 7.1 12.3 14.0
Venture Capital 1.7% 5.7 3.3 0.3 0.5 0.4 2.2 6.9 7.3
Private Real Estate 2.7% 6.1 3.8 0.4 1.8 2.7 3.1 7.0 8.4
Natural Resources 2.7% 5.9 3.5 0.8 1.9 2.0 4.2 6.7 7.5
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Portfolio Illiquidity and Target Horizons. We estimate target holding periods for

alternative assets based on investors’ portfolio allocations and the horizons of each sub-

asset class within alternatives. For hedge funds, we assume a horizon of six months, which

approximately equals the sum of the average redemption, advance notice, and lockup

periods reported in Getmansky, Liang, Schwarz, and Wermers (2015). For private equity

and venture capital, we assume a horizon of 10 years, based on the average commitment

period reported in Metrick and Yasuda (2010). For private real estate and illiquid natural

resources, we also assume horizons of 10 years, based on the holding periods reported in

Collet, Lizieri, and Ward (2003) and Newell and Eves (2009). Panel A of Table 1 reports

Alt. Target Horizon, which is the value-weighted average target horizon.

Table 1 also reports the average number of alternative asset funds held by the endow-

ments, which is an important component of liquidity management. Suppose Endowmen-

t A invests its entire alternative asset allocation into a single private equity fund with

a 10 year lock-up. Suppose Endowment B spreads its alternative asset allocation across

120 different private equity funds, each of which has a 10 year lock-up. Further suppose

that Endowment B staggers its investments across time, so that one lock-up expires ev-

ery month. Although both endowments have the same allocation to private equity, their

liquidity exposures are very different. Endowment A can only reduce its exposure to

private equity through the secondary market. In contrast, Endowment B can costlessly

reduce its exposure to private equity as ,lock-ups expire each month. Thus, by holding

multiple funds with staggered maturities, the endowment can enhance the liquidity of its

portfolio, which we refer to as liquidity diversification. In our quantitative analysis, we

explore the relation between liquidity diversification and investor welfare.

As Panel A of Table 1 shows, there is a strong positive relation between endowment

size and the number of alternative asset funds. On average, endowments in the largest

decile hold 86.5 alternative asset funds; endowments in the smallest decile own only

a single fund. Thus, illiquidity diversification is more effective for larger endowments,

lowering the unspanned risk.
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4.2. Parameter Choices and Calibration

Calculating Unspanned Volatility ǫ. Calibrating the model requires the standard

deviation, beta, and unspanned volatility of the representative alternative asset. To

obtain these parameters, we build up from the standard deviations and correlations of

the sub-asset classes comprising the representative alternative asset. For each sub-asset

class a, we combine its βa and R2
a with the standard deviation of the market σS = 20%

to obtain the implied standard deviation for the asset class: σa =
√
β2
aσ

2
S/R

2
a.

Panel A of Table D1 in Appendix D shows the βa, R
2
a, and σa for each of the alternative

sub-asset classes. For hedge funds, the β and R2 are taken from Getmansky, Lo, and

Makarov (2004) and account for return smoothing. For private equity and venture capital,

the β and R2 are taken from Ewens, Jones, and Rhodes-Kropf (2013). For private real

estate and illiquid natural resources, the variables are based on Pedersen, Page, and He

(2014) and account for return smoothing. Panel B of Appendix Table D1 shows the

pairwise correlations between the asset classes, which are calculated using index returns

over the period 1994-2015.15 We combine the asset allocations from Table 1 with the

data from Appendix Table D1 to impute portfolio β, σ, and unspanned volatility (ǫ).

Table 2 shows the imputed variables for the cross-section of endowment funds.

Parameter Choices. We set the alternative asset βA = 0.6 and the unspanned volatili-

ty of the alternative asset to ǫ = 15%. We set the horizon of the representative alternative

asset H = 6 years. These values closely match the value weighted endowment fund port-

folio values reported earlier.

Following the literature, we choose the following standard parameter values: the

annual risk-free rate r = 4% and the investor’s coefficient of relative risk aversion γ = 2.

We set the EIS to be ψ = 0.5, so that it corresponds to expected utility with γ = 1/ψ = 2.

We also set the investor’s discount rate equal to the risk-free rate, ζ = r. For public equity,

15The indexes are: Bloomberg/Barclays US Aggregate Bond Index, CRSP value weighted index,
Credit Suisse/Tremont Aggregate Hedge Fund Index, Cambridge Associates U.S. Private Equity Index,
Cambridge Associates U.S. Venture Capital Index, NCREIF Property Index (unsmoothed), and the S&P
Global Timber and Forestry Index. For private equity, venture capital, private real estate, and illiquid
natural resources the returns are quarterly; the other returns are monthly.
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Table 2: Implied Alternative-Asset Risk and Unspanned Volatility

This table summarizes the implied parameters of the alternative asset: βA is the beta, σA
is the standard deviation, and ǫ is the unspanned volatility. The first two columns show
results for the equal-weighted and value-weighted average portfolios. The remaining
columns show allocations for size-segmented groups of endowments. e.g., the column
“0-10%” shows the value-weighted statistics for the smallest decile of endowment funds.

Avg. VW 0-10% 20-30% 45-55% 70-80% 90-100% Top 20

βA 0.58 0.61 0.53 0.55 0.54 0.57 0.62 0.62
σA 18.1% 18.7 17.7% 17.7 17.3 18.2 18.9 18.8
ǫ 13.9% 14.2 14.1 13.9 13.5 14.2 14.3 14.2

we use an annual volatility of σS = 20% and a public equity risk premium of µS−r = 6%.

In our model, the alpha of the illiquid alternative investment includes compensation

for skill, liquidity risk, and other risks unspanned by public equities. We set α = 2%,

which we view as reasonable given the empirical findings in the literature. For example,

Franzoni, Nowak, and Phalippou (2012) find that private equity earns a net-of-fees liquid-

ity risk premium of 3% annually. Aragon (2007) and Sadka (2010) find similar net-of-fees

liquidity risk premia for hedge funds. Empirical studies of endowment funds also find

a positive relation between performance and allocations to illiquid assets (e.g., Lerner,

Schoar, and Wang (2008), Brown, Garlappi, and Tiu (2010), Barber and Wang (2013),

and Ang, Ayala, and Goetzmann (2018)). Given this assumed alpha, the expected overall

return on the alternative asset is µA = 0.02 + 0.04 + 0.6× (0.10− 0.04) = 0.096 = 9.6%.

For voluntary liquidations, we assume that the proportional transaction cost is θL =

10%, based on empirical findings and the following back-of-the-envelope calculation: For

secondary market liquidations of private equity, Kleymenova, Talmor, and Vasvari (2012)

and Nadauld, Sensoy, Vorkink, and Weisbach (2019) find average discounts of 25.2% and

13.8%, respectively. For secondary market liquidations of hedge funds, Ramadorai (2012)

finds an average discount of 0.9%, which rises to 7.8% during the financial crisis. There-

fore, we combine the aggregate endowment fund portfolio weights with liquidation costs

of 20% for PE and VC, 1% for hedge funds, and 10% for private real estate and timber-
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land, to obtain a proportional liquidation cost of 9.3% for the representative alternative

asset. For acquisitions, we assume that the proportional acquisition cost is θX = 2%,

which is equal to the average placement agent fee reported by Rikato and Berk (2015)

and Cain, McKeon, and Solomon (2016).

Calibrating the model also requires a payout parameter, which determines the liq-

uidity generated by automatic liquidity events (e.g., liquidity from funds maturing and

paying out capital). The payout rate depends on the number of alternative asset funds

held by the investor. For example, given the target horizon of H = 6 years, an investor

with a single alternative asset fund would receive a large payout once every six years.

In contrast, an investor with a large number of funds would receive smaller but more

frequent payouts. For any given number of funds, denoted by i, Appendix E shows how

it is possible to impute the payout rate using the previously described parameter values.

For our baseline calibration we use i → ∞, which implies a continuous payout rate of

δA = 4.0%. For comparison, we also consider the cases with i = 1 and i = 6.

Table 3 summarizes the baseline parameter values.

5. Quantitative Results

In this section, we analyze the model using the parameter values from Table 3. As a

benchmark, we also analyze the case when the alternative asset is fully liquid.16

5.1. Certainty Equivalent Wealth and Net Worth

We introduce the widely-used net worth as the accounting value of the investor’s portfolio:

Nt ≡Wt +Kt . (34)

In general, due to illiquidity Nt is not an economic measure of the investor’s true welfare.

Figure 1 plots P (W,K, t)/Nt, the ratio of the certainty equivalent wealth to the

portfolio’s book value (net worth) Nt, as a function of

zt =
Kt

Nt
=

Kt

Wt +Kt
=

1

wt + 1
, (35)

16In this case, the alternative asset simply expands the investment opportunity set. Thus, as Appendix
B.1 shows, the value function is clearly higher than when the alternative asset is illiquid.
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Table 3: Summary of Key Parameters

This table summarizes the baseline parameter values. For completeness, the table al-
so reports values of implied parameter values, i.e., those parameters whose values are
determined by other parameters.

Parameter Symbol Value

Coefficient of relative risk aversion γ 2
Elasticity of intertemporal substitution ψ 0.5
Subjective discount rate ζ 4%
Risk-free rate r 4%
Public equity expected return µS 10%
Volatility of market portfolio σS 20%
Beta of the alternative asset βA 0.6
Alternative asset alpha α 2%
Alternative asset expected return µA 9.6%
Volatility of alternative asset σA 19.2%
Alternative asset target horizon H 6
Proportional cost of liquidation θL 0.1
Proportional cost of acquisition θX 0.02

Implied Parameter Values

Correlation between risky assets ρ 0.625
Unspanned volatility ǫ 15%
Payout rate δA 4.00%

the proportion of the portfolio allocated to alternative assets. Recall that we use the

liquidity ratio, wt, as the effective state variable when analyzing the model and its solution

in Sections 2 and 3. Here, we use zt to exposit our quantitative results, as practitioners

typically work with portfolio allocations. Also, note that zt is typically between zero and

one making the results easier to interpret.

As the optimal w is a range (w,w) and z decreases with w, the corresponding range

for the optimal z is (z, z), where

z =
1

w + 1
and z =

1

w + 1
. (36)

Therefore, the lower liquidation boundary w maps to the upper liquidation boundary z

and the upper acquisition boundary w maps to the lower acquisition boundary z.

Figure 1 includes the case of i → ∞, and for comparison it also includes the cas-

es of i = 1 and i = 6. For the case where i → ∞, we see that z lies between
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Figure 1: This figure plots P/N = p(w)/(w + 1), the ratio of the certainty equivalent
wealth P (W,K) = p(w)K and net worth N = W +K, on the y-axis and the portfolio’s
percentage allocation to alternative assets z = K/N on the x-axis. For the case with
with i = ∞ and δA = 4%, the optimal range for the allocation is (z, z) = (0.275, 0.649).
Other parameter values are given in Table 3. Note that ẑ = 0.345 and the maximand is
1.078, highlighted in the figure. For i = 1 and i = 6 the figure shows results at t = mT .

(z, z) = (27.5%, 64.9%). That is, if the allocation to alternatives z falls to the endogenous

acquisition boundary, z = 27.5%, the investor immediately sells just enough units of the

liquid assets and invests the proceeds in the illiquid alternative asset to keep z ≥ 27.5%.

If the allocation to alternatives rises to the endogenous liquidation boundary, z = 64.9%,

the investor sells just enough units of the illiquid asset so that z falls back to 64.9%

Hypothetically, if the investor could costlessly choose z, she would choose the “de-

sired” target ẑ = 34.5%. At this point, her certainty equivalent wealth is 7.8% high-

er than her net worth. The curve is noticeably asymmetric and declines more rapid-

ly to the right of the maximum, as the investor approaches the voluntary liquidation

boundary, because liquidating alternative assets is more costly than acquiring them (i.e.,

θL = 10% > θX = 2%).

In sharp contrast, when the alternative asset is perfectly liquid, as in the case of full
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spanning, the admissible illiquid alternative asset holding is not a range, but instead is

a singleton with the value of z∗ = 44.4%.

For the case of i = 1, the rebalancing boundaries are further to the left, indicating that

the investor holds less of the alternative asset when there is less liquidity diversification

from staggering maturities across time. The curve for i = 6 is similar to that for i→ ∞

indicating that even a moderate number of alternative asset funds provide benefits from

liquidity diversification.

5.2. Rebalancing Boundaries

Figure 2 shows the rebalancing boundaries over the period 0 < t < T . First, recall

that for the case with i = ∞, the rebalancing boundaries are constant over time which

correspond to two horizontal lines at z = 27.5% and z = 64.9%. Next, we turn to the

case with time-varying rebalancing boundaries. We use the case with i = 1 (the investor

owns only a single alternative asset fund) to highlight the main results.

In this case, there is an automatic liquidity event every six years at which time the

alternative asset becomes fully liquid (see Appendix E for more details). The differences

between the cases of i→ ∞ and i = 1 highlights one of the unique features of our model

– that it can accommodate the liquidity diversification from investing in illiquid assets

with staggered lock-up expirations.

The initial rebalancing boundaries, at time t = 0, are lower for the case of i = 1

than that of i → ∞ because the effective cost of illiquidity due to trading restrictions

is greater, resulting in lower demand for the illiquid asset. The comparison between the

cases of i = 1 and i → ∞ illustrates the interrelation of illiquidity from transactions

costs and illiquidity from trading restrictions (i.e., lockups). For the case of i = 1, both

boundaries increase as t → mT . This means that the investor becomes less willing to

liquidate alternative assets and more willing to voluntarily acquire alternative assets as

the automatic liquidity event at t = mT approaches. This is intuitive, as the investor can

simply wait until the automatic liquidity event rather than incurring the liquidation cost.

Indeed, the liquidation boundary zt becomes very large, indicating that as t → mT the
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Figure 2: This figure plots the rebalancing boundaries for the portfolio’s percentage
allocation to alternative assets over time: z = K/N , where N = W +K. The optimal
(lower) acquisition boundary is termed zt and the (upper) liquidation boundary is termed
zt. The input parameter values are given in Table 3. For the case with i → ∞ and
δA = 4%, the optimal z lies between zt = 0.275 and zt = 0.649 for all t (see the two
horizontal lines). The blue solid and red dashed lines correspond to the case with i = 1
and the implied payout δT = 21.34% every six years, i.e., H = 6.

investor prefers to wait for the automatic liquidity event to adjust her portfolio rather

than incur transaction costs.

Similarly, the acquisition boundary, zt, rises as t→ mT for the case of i = 1. However,

the quantitative effects for the acquisition boundary are smaller than for the liquidation

boundary, because the acquisition cost is smaller than the liquidation cost (θL > θX .)

5.3. Comparative Statics

This section reports calibrated results for i → ∞. As shown earlier, because of the

transaction costs the model generates a range of history-dependent optimal allocation,

(z, z). For ease of interpretation, we do not report comparative static results for the

admissible range (z, z), but instead only for the desired target, ẑ, shown in Figure 1.

This single number, z, gives the highest possible utility for the investor. For each table,
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the row in bold font shows results using the baseline parameter values from Table 3.

5.3.1. The Effect of α

Table 4 reports comparative static results for α. Panel A shows results for the general case

where the alternative asset is illiquid. For comparison, Panel B shows results for the case

of full spanning. For the general case with the baseline parameters, the investor allocates

53.93% of the portfolio to public equity, 34.48% to alternative assets, and the remaining

11.59% to bonds. These values are similar to the equal weighted average endowment

fund portfolio allocations found in the data (see Table 1), which has allocations of 50.7%

to public equity, 28.3% to alternative assets, and 21.0% to bonds. In the case of full

spanning, the model implies approximately a 10 percentage point higher allocation to

alternative assets and the spending rate is slightly higher.

Table 4 shows that asset allocations are quite sensitive to changes in α. For example,

increasing α from 2% to 3% increases the alternative asset allocation from 34.48% to

60.24%. As the allocation to the alternative asset increases, the allocation to public

equity falls from 53.93% to 37.91% to manage the overall portfolio β and because of the

additional liquidity risk. If α rises to 4% the investor will optimally borrow 8.12% of

net worth to invest in the alternative asset. It is worth noting that some endowment

funds, such as Harvard, have occasionally taken on debt to invest in public and private

equities. For example, during the financial crisis period, Harvard chose not to liquidate

its endowment but rather to issue bonds (see Ang (2012)).

The sensitivity of the implied portfolio allocations to changes in α is consistent with

the large cross-sectional dispersion in endowment funds’ allocations to alternative assets.

An α of 0% can explain non-participation, while an α of 3% implies allocations that are

broadly consistent with those of large endowments such as Yale and Stanford. Thus, with

reasonable parameter values, our model is consistent with both the average allocation

and also the cross-sectional dispersion of allocations to alternative assets.

The sensitivity of allocations to α is also consistent with the empirically observed

strong relation between endowment fund size and allocations to alternative assets. Lerner,
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Table 4: The Effect of α on Asset Allocation and Spending Rates

This table reports the comparative static effect of α on asset allocation and spending.
The three columns, Public Equity, Alternatives (Alternative Assets), and Bonds, report
Π/N , K/N , and (W −Π)/N , respectively, evaluated at the desired target highlighted in
Figure 1. The Spending column reports the corresponding desired target spending rate,
C/N . These four columns are presented in percent (%), which are omitted for simplicity.
Panel A reports results for the case with illiquidity. Panel B reports results for the case
of full spanning. The baseline parameter values are given in Table 3.

A. General case

Public Equity Alternatives Bonds Spending

α = 0% 75.00 0.00 25.00 5.13

α = 1% 67.29 12.69 20.02 5.16

α = 2% 53.93 34.48 11.59 5.32

α = 3% 37.91 60.24 1.87 5.60

α = 4% 20.41 87.72 −8.12 6.00

B. Full-spanning case

α = 2% 48.33 44.44 7.22 5.35

Schoar, and Wang (2008), Brown, Garlappi, and Tiu (2010), Barber and Wang (2013),

and Ang, Ayala, and Goetzmann (2018) find that large endowment funds persistently

earn significant alphas, which they attribute to superior alternative asset investments,

while small endowments do not earn significant alphas. Lerner, Schoar, and Wang (2008)

discuss how large endowments typically have better investment committees, better access

to elite managers, and can exploit economies of scale in selecting alternative assets.

5.3.2. Unspanned Volatility ǫ

Table 5 shows that the unspanned volatility of the alternative asset, ǫ, has a quantitatively

large effect on asset allocation. This table also reports the implied value of ǫ2/σ2
A, the

fraction of the alternative asset’s total variance from unspanned variance (which changes

in response to the change of ǫ). We use two panels to demonstrate how the unspanned

volatility affects asset allocation.

In Panel A, we fix βA = 0.6, which implies that the systematic volatility of the

alternative asset, ρσA, is also fixed. In our calibration, the spanned variance is (ρσA)
2 =
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Table 5: The Effect of ǫ on Asset Allocation and Spending

This table reports the comparative static effect of ǫ on asset allocation and spending.
The three columns, Public Equity, Alternatives (Alternative Assets), and Bonds, report
Π/N , K/N , and (W −Π)/N , respectively, evaluated at the desired target highlighted in
Figure 1. The Spending column reports the corresponding desired target spending rate,
C/N . These four columns are presented in percent (%), which are omitted for simplicity.
Panel A show the effect of changing ǫ while βA is fixed at βA = 0.6 and the column
“Implied σA” shows the total volatility of the alternative asset. Panel B shows the effect
of changing ǫ while the total volatility of the alternative asset is fixed at σA = 19.2% and
the column “Implied β” shows the implied beta of the alternative asset. In both panels,
the column “ǫ2/σ2

A” shows the alternative asset’s unspanned variance as a percentage of
its total variance. The baseline parameter values are given in Table 3.

Panel A. Fixing βA = 0.6

Implied σA ǫ2/σ2A Public Equity Alternatives Bonds Spending

ǫ = 10% 15.6% 41.0% 27.79 76.34 −4.13 5.59

ǫ = 15% 19.2% 61.0% 53.93 34.48 11.59 5.32

ǫ = 17.5% 21.2% 68.0% 60.17 24.33 15.50 5.26

ǫ = 19.2% 22.6% 71.9% 63.07 19.61 17.33 5.24

Panel B. Fixing σA = 19.2%

Implied βA ǫ2/σ2A Public Equity Alternatives Bonds Spending

ǫ = 10% 0.82 27.1% −2.12 95.24 6.88 5.62

ǫ = 15% 0.60 61.0% 53.93 34.48 11.59 5.32

ǫ = 17.5% 0.40 83.0% 66.41 20.58 13.01 5.25

ǫ = 19.2% 0 100.0% 74.57 11.82 13.61 5.20

(βAσs)
2 = (0.6× 0.2)2 = 0.0144. (This calculation follows from the CAPM equation

given in (4).) Thus, the total variance of the alternative asset, σ2
A = (ρσA)

2 + ǫ2 =

0.122 + ǫ2, changes one-to-one with ǫ2, which implies that ǫ2/σ2
A, also changes with ǫ2.

For example, as we decrease ǫ from 15% (the baseline case) to 10%, the ratio of unspanned

to total variance decreases from 61.0% to 41.0%. The investor reacts by substantially

increasing the allocation to alternative assets from 34.48% to 76.34%, decreasing public

equity from 53.93% to 27.79%, and changing a long position of 11.59% in the bond

to a short position (-4.13%). These changes are quantitatively very large. Moreover,

the difference between 10% and 15% for unspanned volatility is not that substantial,

particularly given the noisiness of empirical estimates of the unspanned volatility of
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alternative assets. Our quantitative results suggest it is worth devoting much more work

to improve the empirical estimates of unspanned volatility.

In Panel B of Table 5, we fix the total volatility of the alternative asset σA at 19.2%. As

we increase the unspanned variance, ǫ2, the alternative’s βA must decrease to adjust the

spanned variance, (ρσA)
2 = (βAσS)

2, so that ǫ2 + (ρσA)
2 = σ2

A = 19.2%2. Now consider

again the exercise of decreasing ǫ from 15% (the baseline case) to 10%. Unlike in Panel

A, βA must increase from 0.60 to 0.82 to offset the reduction in unspanned volatility and

keep σ2
A = 19.2%2. The investor reacts to this change in the composition of total variance

by increasing the allocation to alternative assets from 34.48% to 95.24% and decreasing

public equity from 53.93% to a short position of -2.12%. As in the earlier panel, changes

in the unspanned volatility have quantitatively large effects on asset allocation.

Finally, we study the effect of increasing the spanned variance, σ2
A−ǫ

2 ≡ (ρσA)
2, while

holding the unspanned variance, ǫ2, fixed. We do this by comparing the same numbered

rows in Panels A and B. For example, ǫ is 10% in the first row of both panel, but βA = 0.6

and σA = 15.6% in Panel A, which are lower than βA = 0.82 and σA = 19.2% in Panel B.

As a result, by decreasing ǫ2/σ2
A from 41% in Panel A to 27.1% in Panel B, the investor

significantly increases the allocation to the alternative asset from 76.34% to 95.24%,

decreases public equity from 27.79% to a short position (-2.12%), and increases bonds

from a short position (-4.13%) to a long position of 6.88%. The intuition for this dramatic

shift in asset allocation is as follows. As ǫ2/σ2
A decreases, a higher allocation to the

alternative asset is less costly in terms of the exposure to the alternative asset’s unspanned

risk. The investor therefore increases the allocation to alternatives and reduces public

equity and increases bonds in order to keep the portfolio’s β in a target range.

In sum, the alternative asset’s unspanned and spanned risk have conceptually and

quantitatively very different effects on asset allocation. The investor can offset the public-

market-spanned risk of the alternative asset by adjusting allocations to public equity,

while the alternative asset’s unspanned volatility is by definition specific to the alternative

asset and cannot be hedged.
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Table 6: The Effect of the EIS ψ on Asset Allocation and Spending

This table reports the comparative static effect of ψ on asset allocation and spending.
The three columns, Public Equity, Alternatives (Alternative Assets), and Bonds, report
Π/N , K/N , and (W −Π)/N , respectively, evaluated at the desired target highlighted in
Figure 1. The Spending column reports the corresponding desired target spending rate,
C/N . These four columns are presented in percent (%), which are omitted for simplicity.
The baseline parameter values are given in Table 3. For the results in this table, we fix
risk aversion at γ = 2.

Public Equity Alternatives Bonds Spending

ψ = 0.1 56.20 30.77 13.03 6.36

ψ = 0.5 53.93 34.48 11.59 5.32

ψ = 1 50.47 40.16 9.37 3.95

ψ = 2 44.39 50.25 5.36 1.33

5.3.3. The EIS ψ

Table 6 shows that varying the EIS has large quantitative effects on the spending rate. In

this panel, we fix risk aversion at γ = 2, a widely used value. An investor who is unwilling

to substitute spending over time (e.g., ψ = 0.1) has a spending rate of 6.36%, which is

relatively high (in light of the permanent-income argument). In contrast, an investor who

is willing to substitute spending over time, (e.g., ψ = 2 as in the long-run risk literature

following Bansal and Yaron (2004)), has a spending rate of only 1.33%. The intuition is

that an investor with a high EIS defers spending to exploit the investment opportunity.

As the EIS increases, the investor increases allocations to the illiquid alternative asset

and reduces allocations to the liquid asset classes (public equity and bonds). For example,

an investor with ψ = 0.1 allocates 56.20% of net worth to public equity and 30.77%

to alternatives, compared to an investor with ψ = 2 who allocates 44.39% to public

equity and 50.25% to illiquid alternatives. A high EIS increases the investor’s willingness

to shift consumption across periods, which allows a high EIS investor to respond to

return shocks by deferring consumption rather than engaging in costly liquidation of the

alternative asset. The strong dependence of asset allocation on the EIS in our model is

due to the interactive effect between asset allocation and optimal spending policies in our
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Table 7: The Effect of γ on Asset Allocation and Spending Rates

This table reports the comparative static effect of γ on asset allocation and spending.
The three columns, Public Equity, Alternatives (Alternative Assets), and Bonds, report
Π/N , K/N , and (W −Π)/N , respectively, evaluated at the desired target highlighted in
Figure 1. The Spending column reports the corresponding desired target spending rate,
C/N . These four columns are presented in percent (%), which are omitted for simplicity.
The baseline parameter values are given in Table 3. For the results in this table, we fix
the EIS at ψ = 0.5.

Public Equity Alternatives Bonds Spending

γ = 1 112.75 53.76 −66.51 6.57

γ = 2 53.93 34.48 11.59 5.32

γ = 4 27.21 17.36 55.43 4.66

incomplete-markets model. In contrast, for the case of full spanning, the asset allocation

rule is the same as that in Merton (1971) and it is risk aversion, not the the EIS, that

influences asset allocation (see equations (C.1) and (C.2)).

Our model-implied results for the relation between spending flexibility and portfolio

liquidity are consistent with empirical facts. Hayes, Primbs, and Chiquoine (2015) argue

that pension funds have little spending flexibility and family offices have a great deal

of flexibility. Rose and Seligman (2016) find that the average allocation to alternative

assets for public pension plans is only 3.3%. In contrast, a UBS/Campden survey found

that family offices hold more than 50% of their wealth in illiquid asset classes.17 Over a

medium or long horizon, the combined effect of a high EIS – reducing spending and tilting

investments towards illiquid alternatives which deliver alpha – will have a significant

impact on the accumulation of net worth.

5.3.4. Risk Aversion γ

Table 7 shows that the coefficient of relative risk aversion has a large effect on asset

allocation. For a fixed EIS of ψ = 0.5, if risk aversion decreases from γ = 2 to γ = 1 the

investor increases the portfolio allocation to alternative assets from 34.48% to 53.76%.

Even more strikingly, the investor changes the portfolio allocation to the risk-free asset

17See http://www.globalfamilyofficereport.com/investments/.
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from a long position of 11.59% to a short position (borrowing 66.51% of net worth). As

a result, the investor increases the portfolio allocation to public equity from 53.93% to

a levered position (112.75% of net worth). As risk aversion increases from γ = 2 to

γ = 4, allocations to bonds significantly increase from 11.59% to 55.43%, allocations

to alternative assets decrease by about half from 34.48% to 17.36%, and allocations to

public equity decrease from 53.93% to 27.21%.

6. Conclusion

The “Endowment Model” is widely used by many university endowment funds and other

institutional investors. We build on the framework of Modern Portfolio Theory to devel-

op a dynamic portfolio-choice model with illiquid alternative assets to analyze conditions

under which the Endowment Model does and does not work. We capture the illiquidity

of the alternative asset as follows. First, a fraction of the alternative asset periodically

matures and becomes fully liquid, and the investor can benefit from liquidity diversifica-

tion by holding alternative assets maturing at different dates. Second, the investor can

voluntarily trade in the illiquid asset at any time by paying a proportional transaction

cost. Third, the alternative asset’s risk is not fully spanned by public equity.

Quantitatively, our model’s results are broadly consistent with the average level and

the cross-sectional variation of actual university endowment funds’ asset allocation and

spending decisions. We show that asset allocations and spending decisions crucially

depend on the alternative asset’s expected excess return, its risk unspanned by public

equity, and investors’ preferences for inter-temporal spending smoothing.

Due to space considerations we have not included several conceptually interesting

and generalizations. For example, stochastic calls and distributions are potentially im-

portant as they create uncertainty about the precise timing of cash flows making illiq-

uid alternative assets less attractive, ceteris paribus. Extending the model to allow for

time-variation in the liquidation cost is also an interesting direction for future research,

particularly given the rise in illiquidity observed during the financial crisis.
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Appendices

A Public Equity and Bonds with No Alternatives

First, we summarize the solution for the complete-markets special case of our model where

an investor with Duffie-Epstein-Zin recursive preferences has the standard investment

opportunities defined by the public equity’s risky return process given by (1) and a

risk-free bond that pays a constant rate of interest r. The investor dynamically adjusts

her consumption/spending and frictionlessly rebalances her portfolio to maximize her

recursive preferences given in (8)-(9). Note that the investor only has liquid wealth W .

The following proposition summarizes the solution for this frictionless benchmark.

Proposition 2 The investor allocates a constant fraction, denoted by π, of her wealth

Wt to public equity, i.e., the total investment amount in public equity is Π = πW where

π =
µS − r

γσ2
S

. (A.1)

Note that the optimal asset allocation rule is the same as that in Merton (1969, 1971).

Specifically, the EIS has no effect on π in this frictionless benchmark. The optimal

spending Ct is proportional to wealth Wt: Ct = φ1Wt where

φ1 = ζ + (1− ψ)

(
r − ζ +

(µS − r)2

2σ2
Sγ

)
. (A.2)

Note that the optimal spending rule depends on both risk aversion γ and the EIS ψ, which

is different from Merton (1969, 1971). The investor’s value function J(W ) is given by:

J(W ) =
(b1W )1−γ

1− γ
, (A.3)

where b1 is a constant given by:

b1 = ζ
ψ
ψ−1φ

1

1−ψ

1 . (A.4)

Next, we analyze the general case where the investor can also invest in illiquid alter-

native assets in addition to public equity and bonds.
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B Proof for Proposition 1

Optimal Policy Functions and PDE for p(w, t). We conjecture that the value

function V (W,K, t) takes the following form:

V (W,K, t) =
(b1P (W,K, t))

1−γ

1− γ
=

(b1p(w, t)K)1−γ

1− γ
, (B.1)

where b1 is given in (A.4). Substituting (B.1) into the consumption FOC given in (13)

and the asset-allocation FOC given in (14), we obtain (22) for the scaled consumption

rule c(w, t) and (23) for the scaled asset allocation in public equity π(w, t), respectively.

Finally, substituting the conjectured value function given in (B.1) and the consumption

and asset-allocation policy rules, given in (22) and (23), into the HJB equation (12), we

obtain the PDE (24) for the certainty equivalent wealth p(w, t).

Lower Liquidation Boundary Wt and Upper Acquisition Boundary Wt. Let

(Wt, Kt) denote the investor’s time-t holdings in public equity and the alternative asset,

respectively. We use ∆ to denote the amount of the illiquid alternative asset that the

investor is considering to liquidate. The investor’s post-liquidation holdings in public

equity and the alternative asset, are equal to Kt −∆ and Wt + (1− θL)∆, respectively.

Because the investor’s value function is continuous before and after liquidation, we have

V (Wt + (1− θL)∆, Kt −∆, t)− V (Wt, Kt, t) = 0 . (B.2)

Dividing (B.2) by ∆ and letting ∆ → 0, we obtain under differentiability:

0 = lim
∆→0

1

∆
[V (Wt + (1− θL)∆, Kt −∆, t)− V (Wt + (1− θL)∆, Kt, t)]

+ lim
∆→0

1− θL
∆(1 − θL)

[V (Wt + (1− θL)∆, Kt, t)− V (Wt, Kt, t)]

= −VK(Wt, Kt, t) + (1− θL)VW (Wt, Kt, t) . (B.3)

The preceding equation implicitly defines the boundary Wt, in that

VK(Wt, Kt, t) = (1− θL)VW (Wt, Kt, t) . (B.4)

38



The optimality ofWt implies that the derivatives on both sides of (B.6) are equal. There-

fore,

VKW (Wt, Kt, t) = (1− θL)VWW (Wt, Kt, t) . (B.5)

Substituting the value function given by (B.1) into (B.4), we obtain:

PK(Wt, Kt, t) = (1− θL)PW (Wt, Kt, t) . (B.6)

Similarly, substituting the value function given by (B.1) into (B.5), we obtain:

PKW (Wt, Kt, t) = (1− θL)PWW (Wt, Kt, t) . (B.7)

By using the homogeneity property, we obtain the following: PW (Wt, Kt, t) = pw(wt, t),

PWW (Wt, Kt, t) = pww(wt, t)/Kt, PK(Wt, Kt, t) = p(wt, t)−pw(wt, t)wt, and PWK(Wt, Kt, t) =

−Wtpww(wt, t)/K
2
t . Substituting these expressions into (B.6) and (B.7), we obtain

p(wt, t)− pw(wt, t)wt = (1− θL)pw(wt, t) (B.8)

−pww(wt, t)wt/Kt = (1− θL)pww(wt, t)/Kt . (B.9)

Simplifying these two equations, we obtain (25) and (27).

We can derive the boundary conditions for Wt and wt by using essentially the same

procedure as the above.

The preceding proof is applicable to the upper and lower barriers for all t such that

t 6= mT . To complete our analysis for t = mT . we need to incorporate the automatic

liquidity event that takes place t = mT .

Value and Decisions at t = mT . When there is an automatic liquidity event at

t = mT , it is possible that without active rebalancing, the automatic liquidity can cause

the portfolio to be overly exposed to liquid assets. In this case, i.e., when ŵmT > wmT ,

the investor may choose to reduce her liquid asset holding.

Suppose that the investor optimally purchases Λ units of the alternative asset such

that ŴmT − (1 + θX)Λ =WmT and the liquidity ratio is then equal to

wmT =
ŴmT − (1 + θX)Λ

K̂mT + Λ
= lim

t→mT

Wt + δTKt − (1 + θX)Λ

Kt − δTKt + Λ
, (B.10)
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By solving the above equation, we obtain the investor’s demand for the alternative

asset at t = mT , Λ = λKmT−, where λ is the scaled demand and is given by

λ = lim
t→mT

wt + δT − wmT (1− δT )

1 + θX + wmT
. (B.11)

C Full Spanning with Liquid Alternative Asset

In this appendix, we summarize the full-spanning case where the alternative asset is fully

liquid. An investor with Duffie-Epstein-Zin recursive preferences has three investment

opportunities: (a.) the public equity whose return process is given by (1), (b.) a risk-

free bond that pays a constant rate of interest r, and (c.) the risky liquid alternative

asset. The investor dynamically adjusts her consumption/spending and frictionlessly

rebalances her portfolio to maximize her recursive preferences given in (8)-(9). Note that

the investor’s wealth is fully liquid. The following proposition summarizes the solution

for this frictionless benchmark.

Proposition 3 The investor continuously rebalances the portfolio so the investment in

public equity, Π, and in the alternative asset, K, are proportional to net worth N , i.e.

Π =
1

σSγ(1− ρ2)

(
µS − r

σS
− ρ

µA − r

σA

)
N , (C.1)

K =
α

γǫ2
N . (C.2)

The remaining wealth, N − (Π +K), is allocated to the risk-free bond. The optimal
consumption C is proportional to the net worth, N : C = φ2N where

φ2 = ζ+(1−ψ)

[
r − ζ +

1

2γ(1 − ρ2)

(
(µS − r)2

σ2S
−

2ρ(µS − r)(µA − r)

σSσA
+

(µA − r)2

σ2A

)]
. (C.3)

The investor’s value function V (N) is given by:

V (N) =
(b2N)1−γ

1− γ
= J((b2/b1)N) , (C.4)

where b2 is a constant given by

b2 = ζ
ψ
ψ−1φ

1

1−ψ

2 , (C.5)

and J( · ) is the value function given in (A.3) for an investor who only has access to

public equity and bonds.
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By comparing φ2 given in (C.3) and φ1 given in (A.2), we see that diversification (|ρ| < 1)

and an additional risk premium µA−r
σA

> 0 both make the investor better off. By intro-

ducing a new risky (alternative) asset into the investment opportunity set, the investor is

better off because b2 > b1. The second equality in (C.4) implies that b2/b1−1 is the frac-

tion of wealth that the investor would need as compensation to permanently give up the

opportunity to invest in the liquid alternative asset and instead live in the environment

where she can only invest in public equity and the risk-free asset.

Proof for the Case of Full Spanning with the Liquid Alternative Asset. Using

the standard dynamic programming method, we have:

0 = max
C,Π,K

f(C, V ) + [rN + (µS − r)Π + (µA − r)K − C]V N

+
(ΠσS)

2 + 2ρΠσSKσA + (KσA)
2

2
V NN , (C.6)

and using the FOCs for Π, K and C, we have:

fC(C, V ) = VN , (C.7)

Π = −
µS − r

σ2
S

VN
VNN

−
ρσA
σS

K , (C.8)

K = −
µA − r

σ2
A

VN
VNN

−
ρσS
σA

Π . (C.9)

We conjecture and verify that the value function takes the following form:

V (N) =
(b2N)1−γ

1− γ
. (C.10)

Substituting (C.10) into the FOCs, we obtain C = ζψb1−ψ2 N , (C.1), and (C.2). Finally,

substituting them into the HJB equation (C.6) and simplifying the expression, we obtain

(C.3).

D Inputs for Calculating Unspanned Volatility

Table D1 shows summary statistics for the sub-asset classes within the illiquid asset class,

which are used to calculate the unspanned volatility of the endowment fund portfolios.
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Table D1: Summary of Asset Class Risk and Correlations

Panel A shows βa, R
2
a, and σa for each alternative asset class a. Panel B shows the

pairwise correlations between these sub-asset classes.

Panel A
βa R2

a σa
Hedge Funds (HF) 0.54 0.32 19.1%
Private Equity (PrivEqu) 0.72 0.32 25.4%
Venture Capital (VC) 1.23 0.30 45.1%
Private Real Estate (PrivRE) 0.50 0.49 16.0%
Natural Resources (NatRes) 0.20 0.07 17.0%

Panel B
FixedInc PubEqu HF PrivEqu VC PrivRE NatRes

FixedInc 1
PubEqu 0.02 1
HF 0.16 0.64 1
PrivEqu -0.23 0.78 0.73 1
VC -0.18 0.46 0.52 0.66 1
PrivRE -0.13 0.35 0.31 0.51 0.17 1
NatRes 0.04 0.87 0.67 0.70 0.46 0.44 1

E Calibrating the Payout Rates: δA and δT

We focus on the steady state in which the investor always has i funds at any time t. This

is feasible provided the investor immediately replaces each fund that exits.

To simplify the exposition, assume that each fund’s payoff structure involves only

one contribution at its inception and one distribution upon its exit, and the horizon

(or equivalently the lockup period) of each fund is H . At the steady state, i/H funds

mature each year, which means that there is one liquidity event every T = H/i years.

For example, if the lockup period for each fund is H = 6 and there are three funds at the

steady state (i = 3), then every two years (T = 6/3 = 2) an automatic liquidity event

occurs. To ensure that the investor has three funds at the steady state, the investor

immediately replaces the exited fund by investing in a new fund with a 6-year lock-up.

To ensure growth stationarity, we assume that both the growth rate of each fund,

gA, and the growth rate of the inception size for each fund (vintage), gI , are constant.

Consider a vintage-t fund, which refers to the fund that enters the portfolio at time t.

Let ISt denote the fund’s initial size (IS) at inception. Its size at (t+jT ) is then e
gAjT ISt
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where j = 1, 2, · · · i and hence the fund’s size when exiting at time t+H is egAHISt.

At time (t+H) the investor holds a total of i illiquid alternative funds ranging from

vintage-t to vintage-(t + (i − 1)T ). Note that the value of the vintage-(t + j) fund is

egA(i−j+1)T × (ISte
gI(j−1)T ) as its inception size is ISte

gI(j−1)T and has grown at the rate

of gA per year for (i− j + 1)T years. Summing across all vintages, we obtain:

i∑

j=1

egA(i−j+1)T × (ISte
gI(j−1)T ) = egIHISt ×

i∑

j=1

e(gA−gI)jT .

The net payout at time (t +H) is given by the difference between egAHISt, the size

of the exiting vintage-t fund, and egIHISt, the size of the new vintage-(t +H) fund. As

the payout occurs once every T years, the annualized net payout rate is then:

1

T

egAHISt − egIHISt

egIHISt ×
∑i

j=1 e
(gA−gI)jT

=
1

T

e(gA−gI)H − 1∑i
j=1 e

(gA−gI)jT
=

1

T

(
1− e−(gA−gI)T

)
. (E.1)

Next, we use this annualized net payout rate to calibrate δA and δT . Although, for

the sake of generality, the model includes both δA and δT , in any single calibration we

use only one of either δA or δT . Next, we provide three examples.

First, consider the case when i→ ∞, and with fixed finite holding period H for each

fund, T ≡ H/i → 0. Therefore, the investor continuously receives payout at a constant

rate. This maps to the parameter δA in our model. By applying L’Hopital’s rule to (E.1),

we obtain, as one may expect, the following simple expression for the net payout rate,

δA = gA − gI , (E.2)

which is simply the difference between the incumbent fund growth rate gA and the growth

of the new fund’s initial size gI . For our calibration, we set µA = gA = 9.6% and gI = 5.6%

(approximately equal to the average endowment fund growth rate over the past 20 years)

resulting in δA = 4%.

Second, consider the case when the investor has only one fund outstanding at each

point in time. Then, T = H , the payout occurs once every H years, and we use δT to

capture the payout rate for this case. That is, when T is relatively large, δT is given by:

δT = 1− e−(gA−gI)T . (E.3)
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Note that δT as defined in the model is not annualized. Thus, with gA = 9.6% and

gI = 5.6%, for a single fund (i = 1) in the portfolio and H = 6, δT = 21.34%, which is

equivalent to an annualized payout of 3.28%.

Third, consider an intermediate case when the investor has six funds at each point in

time. Then, we have T = H/i = 6/6 = 1, and we could use δT = δ1 = 1− e−0.04 = 3.92%

to capture the payout. Alternatively, we could approximate with a continuous constant

dividend yield by annualizing δT and using this annualized value as δA in the calibration.

In this case, we would have δA ≈ (1+ δT )
1/T − 1 = δT = δ1 = 3.92% when T = 1. As one

can see, the difference between the two approximations is not noticeable.
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